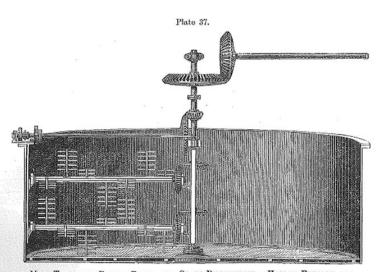
Evolution of a Mash Tun

Scott Davies (PhD), Mark Philips (CEng), and John Hancock (FEng) Briggs of Burton plc

Conference organised and hosted by

On behalf of IBD Trading Ltd


Talk Overview

- Mashing and Lautering processes
- Mash Tun design evolution

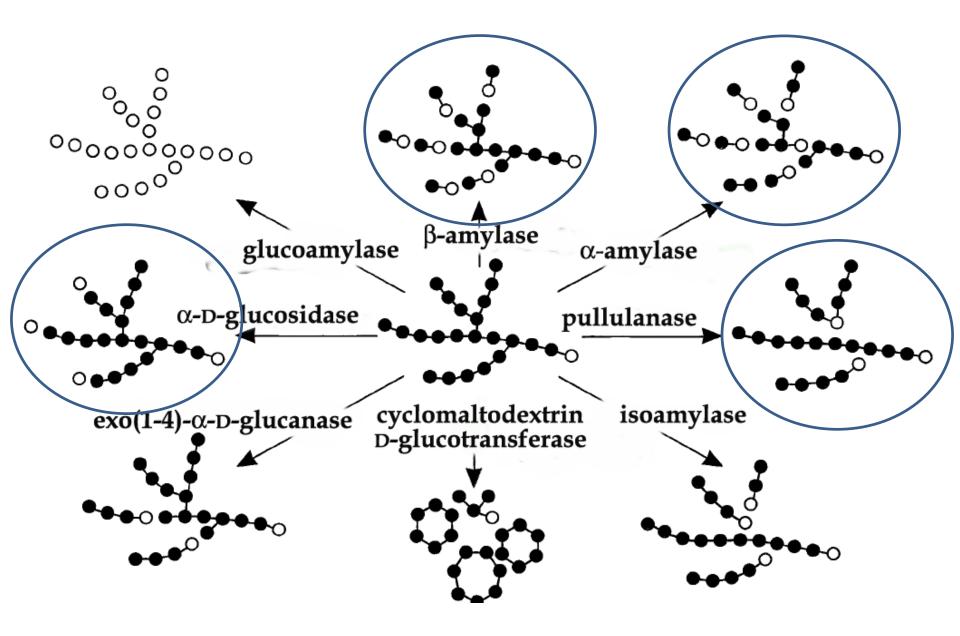
Overview of a Distillery Mash Tun's operation

Inputs

- Water
- Malt / Grist
- Electricity
 - Motor / pumps
- Steam
 - Heat
- Physical (Labour)

Mash-Tun, with Double Rakes, for Grain Distilleries. Haslam Foundry and Engineering Co., Ltd., Derby.

Outputs


- Wort
- Spent grains / Draff

Inefficiencies

- Evaporation
- Soiling

Mashing and Mash Separation

- Mashing
 - Mixing of malt grist with water
 - Breakdown of proteins
 - Starch gelatinisation & liquefaction
 - Conversion of starch into lower molecular weight fermentable sugars
- Mash Separation / Lautering
 - Filtration of Mash
 - Separation of Wort from grain bed
 - Sparging
 - Leaching of remaining extract from grain bed using hot sparge water
 - Separation of Draff from Wort (draff) for disposal
 - By-product

Amylose unbranched

 α -amylase – random >3 length oligomers

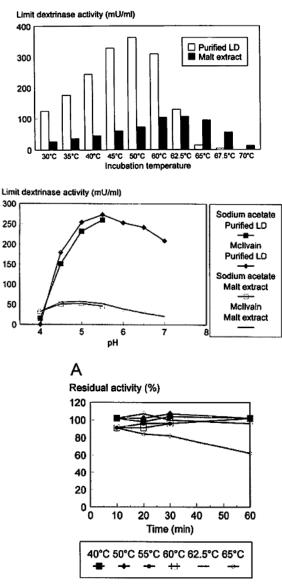
α-glucosidase – terminal glucose from reducing end

β-amylase – maltose from reducing

Amylopectin branched

Limit dextrinase – hydrolyse 1,6 branches releasing maltose

http://www.chem.qmul.ac.uk/iubmb/enzyme/EC3/2/1/


Limit dextrinase activity

Optimum conditions

- Temperature: 62.5°C
- pH: 5.5

Drop in activity at T > 65°C and t = 10 min

Stenholm, Katharina, and Silja Home. 'A New Approach to Limit Dextrinase and Its Role in Mashing*'. *Journal of the Institute of Brewing* 105, no. 4 (1 January 1999): 205–10. doi:10.1002/j.2050-0416.1999.tb00020.x.

Mash Conversion

Lab mill setting

- 2 = Fine (Used in Semi-Lauter Tuns)
- 7 = Coarse

78.06/76.15 = 102.5%

TABLE II. Analyses of Malts Used in RG/FG Fermentability Comparison

Barley Variety	SE 2 dwb %	SE 7 dwb %	2/7 difference %	F(FG) %	FE dwb %
Golden Promise	78.06 ± 0.62	76.15±0.7	1.91±0.62	87.42±0.63	66.57±0.91
Natasha	80.62 ± 0.95	79.23 ± 0.65	1.39 ± 0.50	87.77±0.33	69.54±0.67
Triumph	79.64 ± 0.50	78.43 ± 0.55	1.21 ± 0.44	87.87 ± 0.46	68.92 ± 0.57
All	79.27±1.26	77.7±1.59	1.57 ± 0.62	87.64 ± 0.55	68.10 ± 1.58

Results are mean ± 2SD.

Dolan, T. C. S. 'Scotch Malt Whisky Distillers' Malted Barley Specifications the Concept of Fermentable Extract — Ten Years On'. *Journal of the Institute of Brewing* 97, no. 1 (2 January 1991): 27–31. doi:10.1002/j.2050-0416.1991.tb01049.x.

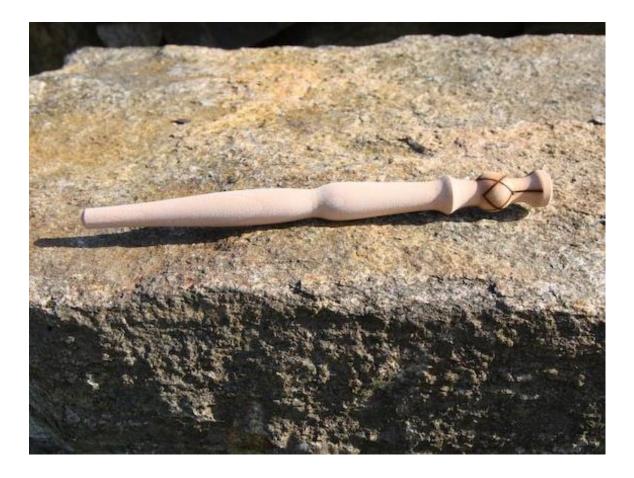
Practical Obstacles in Mash Tun Benchmarking

- Distillery and Brewing analytical methods
 - Laboratory based extract recovery yields
 - >100% yield achievable
 - Extraction in last worts using 85 90°C sparge water
 - Only 60°C in EBC method
 - Comparable?
- Heterogeneity of raw materials?
- Extract Yield / Timeframe
- Extract / Fermentable yield?

Key Distillery Wort parameters

- Haze
 - Clear / Cloudy
- Extract
 - Yield / Fermentable sugars
 - SG
- Chemistry
 - Free Amino Nitrogen
 - Lipids
 - Polyphenols
 - рН
- Dextrinase enzyme activity

Early Distillery Mash Tun Technology


Conference organised and hosted by

On behalf of IBD Trading Ltd

WORLDWIDE DISTILLED SPIRITS CONFERENCE 8-11 SEPTEMBER, GLASGOW 2014 Future Challenges, New Solutions Diamond Sponsor

Spurtle?

Scots kitchen tool for mixing porridge

Mash Tun (with Stirrer Gear)

- Roller milled / Steeles mashed @ 4:1 grist ratio
- Plate loading circa 250 to 300 kg/m2
- Cycle time circa 6-8 hours
- Poor Draff out
- Flat bottom / no under plate clean
- Difficult to clean
- Cloudy worts

Traditional Mash Tuns

Semi-lauter using fixed knives

Conference organised and hosted by

On behalf of IBD Trading Ltd

Semi-Lauter Tun

- Roller milled / Steeles mashed @ 4:1 grist ratio
- Plate loading 250 kg/m2
- Cycle time circa 5-6 hours
- Balanced non-pressure run-off
- Fixed rake height cloudy worts or slower run-off
- Limited rake efficiency / potential bed channelling
- Swinging feet Draff out slow
- Usually flat bottom / poor under plate clean
 - Good above plate clean

Lateral Technology Transfer

What can Distillers borrow from Brewers?

Conference organised and hosted by

On behalf of IBD Trading Ltd

Technology Selection Considerations

Process

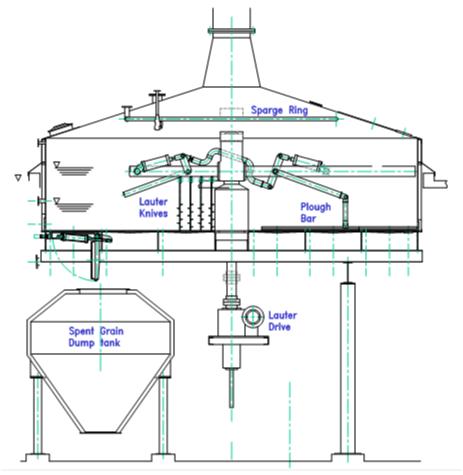
- Recipe Variation
 - Grist Charge
 - Mash / Sparge Ratio
- Wort Clarity
 - Cloudy / Clear
- Yield
 - Washback Conversion
 - Weak Worts
- Spirit Character
 - Spirit Type
 - Mill Type / Compression

Physical

- Real Estate
 - Equipment Footprint
 - Separate Conversion Vessel for Mash Filter
- Thermal Shock
 - High Temperature Sparging
 - Mash Filter Membrane
 Temperature Limitations

Mash Separation Technologies

Lauter Tun


Mash Filter

Technology Comparison

	Mash Tun (Full Lauter)	Mash Filter
Throughput	Mod. – High 3.0-5.0h TAT	High 2.0h TAT
Extract Efficiency	High 101 to 102%	High Max 103%
Flexibility	Good 40 to 100%	Poor 80 to 110%
CIP	ОК	Inefficient 4 to 8 hrs
Complexity	Complex	Complex
Cost	Moderate	High
Spirit Yield	416 L/Te	Comparable

Full Lauter – Development Technology Transfer from Brewery Lauter Tuns

Low profile valley bottom Auto programmed lautering vs DP Enhanced lift Knives – extract & cycle time Plough Draff discharge

Draff dump tank

Electro-mechanical fully variable drive

- Rotation – Lauter & discharge

- Raise / lower

Large diameter - low extract loss Draff valves

Maximise Wort collection time

Continuous profiled sparging

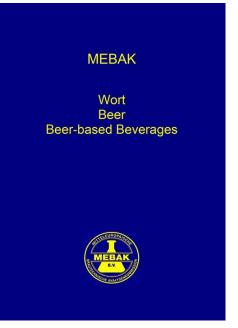
Distillery Full Lauter Tun – Latest

- 6 Roll milled / Steeles mashed @
 3.8:1 grist ratio
- Plate loading 160 to 175 kg/m2
- Cycle time 3 to 4 hours
- Controlled pumped run-off
- Valley bottom / effective under plate clean
- Good over plate clean
- Automated lautering vs volume & DP
- Clear wort capability without time or extract penalty
- Rapid Draff out

Full Lauter – Distillery Mash Tun Development

- VSD Steeles Masher
 - enhanced wort clarity
- Distillery knives flight pitching
- Automated distillery run-off profile
 - Wort to Washback
 - Weak Worts
- Integrated Volume & DP lautering
- Distillery continuous sparge profile
 - Multi-zone underplate flushing

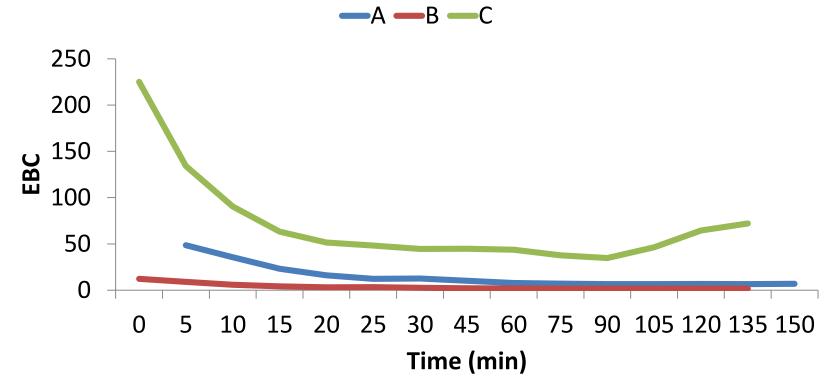
Mash Tun Flexibility


- Traditional Distillery Mash Tun
 - Limited mechanical variation
 - Fixed knives and batch size
- Modern Briggs Distillery Mash Tun
 - Full-Lauter
 - Responds to filter bed structure and wort run off
 - Automatically performs deep rake when run off rate stopped
 - Can be tuned to produce Cloudy or Clear Wort dependent on the Distillers requirements

Malted Barley

Flexibility in a Lauter Tun

- Access to new varieties / lower cost malts?
- Access to low Diastatic power malt using more extensive milling
- Reduce particle size to improve starch accessibility
- Different specifications


Wort Clarity

Clear Worts capability without Cycle Time or Extract penalty

- <a>
 <a>
- <a>
 <a>
- <u><40 EBC average clarity for WW</u> waters
- *Ref MEBAK <40 EBC for more than 60% of run-off time*

Mashing Trial Results

Trial	Details
A	Raking regime for normal production Rake height determined by DP
В	Raking regime more aggressive Normal production (lower heights used)
С	Raking regime – rake height set at 100mm for bulk of run

Conclusions

- Rake operation influences bed filterability
- The requirement for clear or cloudy wort is specific to the distillery
- Full Lauter mechanism in a Distillery Mash Tun provides the capacity to the vary extent of wort clarity
- Future trials to be performed

Acknowledgements

Conference organised and hosted by

On behalf of IBD Trading Ltd

