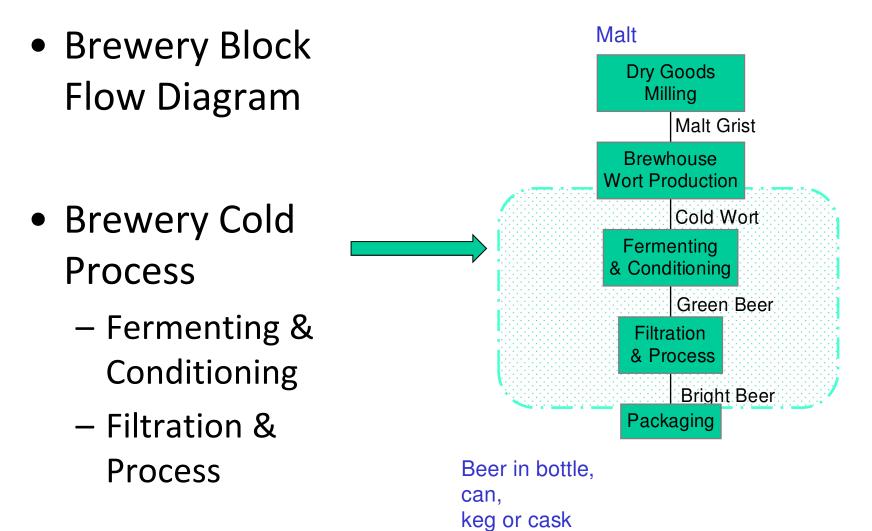


Cold Process & Refrigeration Integration

IBD Midlands Section Engineering Symposium on Engineering Design & Sustainability

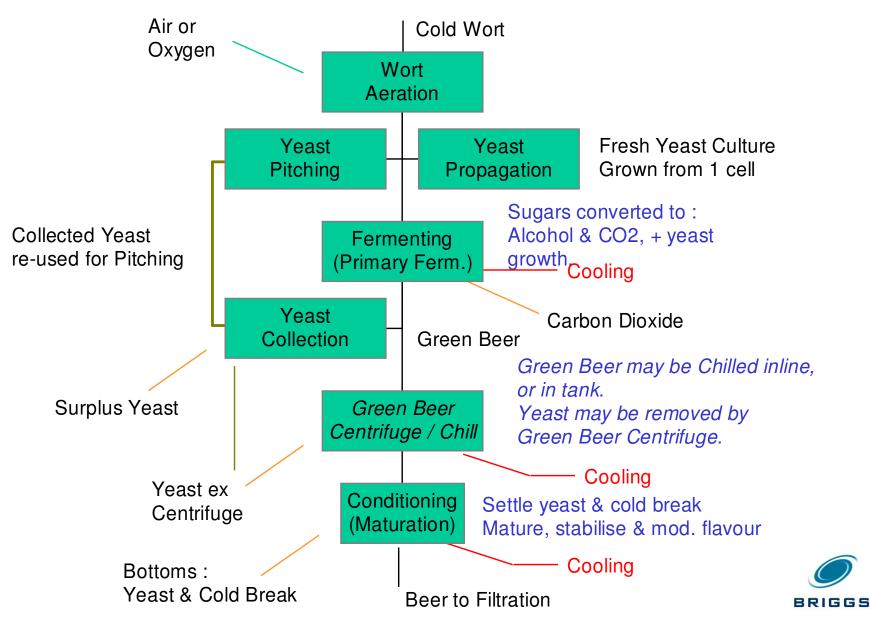
Derby – Jan 2017

James Ludford-Brooks & Paul Dowd – Briggs of Burton

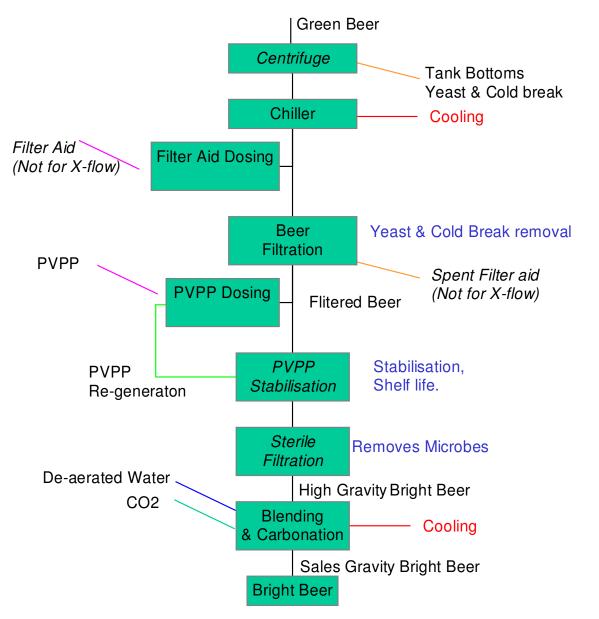


Cold Process & Refrigeration Integration

- Overview of the brewery cold process
- Technology review for key process steps
- Identification of refrigeration duties & reasons to chill
- Refrigerant selection
- Overall refrigeration system design
- Summary



Brewery Cold Process



Fermenting & Conditioning - Process Flow

Filtration & Process – Process Flow

Identification of refrigeration duties

- Key locations requiring refrigeration & reasons to chill:
 - Yeast = Maintaining yeast viability & vitality
 - Propagation system Vessel cooling
 - Collection system Vessel cooling
 - Fermentation/Storage = Control of fermentation profile
 - Temperature control of fermentation profile Vessel/HEX
 - Rapid chill back Vessel/HEX
 - Maturation Vessel
 - Filtration & Blending = Improved filtration (preventing chill haze) & improving CO2 solubility
 - Chilled de-aerated blending water HEX
 - Pre-filter HEX
 - Bright beer Tanks = maintenance of product quality and packaging efficiency
 - Storage Vessel Cooling

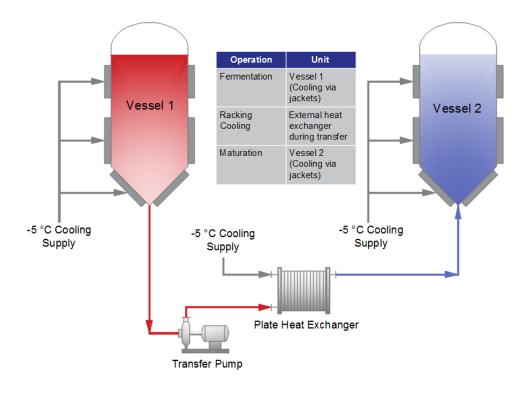
Technology Review - Yeast

- Propagation
 - Wort must be sterile prior to propagation
 - Take off wort from hot side of wort cooler
 - Raise to sterilisation temperature in vessel using external jackets, followed by cooling via jackets energy intensive
 - Take off wort on cold side of wort cooler
 - Flash pasteurise into sterile vessel
 - Flash pasteurising is described in following slides but 93-95% recovery
- Yeast management
 - Consider temperature shock, refrigerant temperature not too cold
 - If yeast collected from high gravity brewing = high alcohol content which must be blended down with water to maintain yeast viability

Brewery Yeast Propagation & Storage NY, USA

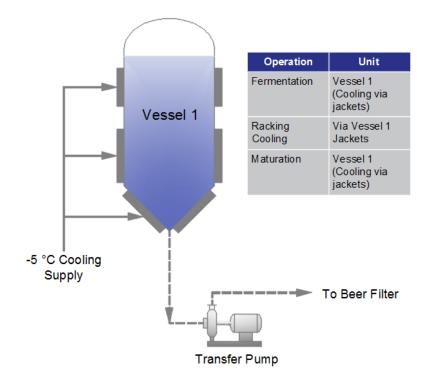
- Two-stage 'rapid' yeast propagation lab. scale to full fermenter pitching scale
- Pure oxygen fed to accurate flow profile for increased biomass & cell viability
- Stage 1 vessel 7 hl working capacity
- Stage 2 vessel 94 hl working capacity
- Cropped yeast storage vessels, 1 x 30 hl & 2 x 60 hl
- Dedicated single-use CIP set
- Steam-in-place of vessels & pipework
- Fully automated, repeatable oxygenation, temperature

& agitation profile


Brewery Yeast Propagation & Storage VA, USA

- Two-stage 'rapid' yeast propagation from laboratory scale to full fermenter pitching scale
- Stage 1 vessel 16 hl working volume
- Stage 2 vessel 260 hl working volume
- Designed, installed & commissioned as part of brand new brewery
- Up to 220 million cells/ml within 48 hours from stage one inoculation up to end of stage two growth stage
- Pure oxygen fed to an accurate flow profile leading to increased biomass & cell viability >98%.
- High viability yeast suitable for pitching into production wort volumes, with representative high quality & good yeast growth during production

Technology Review - Fermenting and storage methods

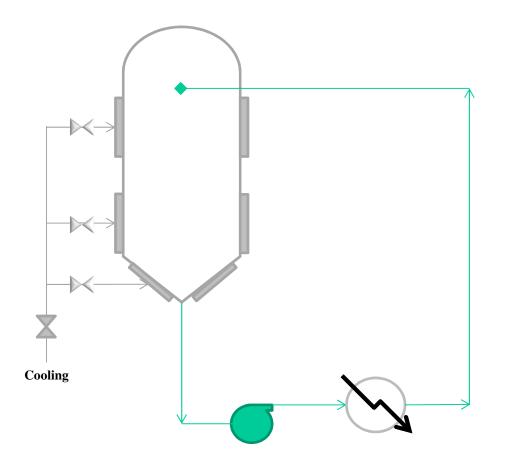

- Separate Tanks
 - Separate fermentation and maturation vessels
 - DPVs or dedicated FVs & CTs

Technology Review - Fermenting and storage methods

- Unitank
 - Single vessel only

FVs / DPVs - Limpet Coil Jackets

- Continuous spiral
- Defined flow path
- Ideal for secondary refrigerant e.g. Glycol
- Also used for Primary refrigerant e.g. NH₃



External Chilling & Dynamic Mixing

- Advantages
 - Removes limitation of jacket surface area, especially important on large vessels
 - Increased surface area and so decreased chill back time
 - Enables vessel agitation so decreased fermentation time
 - Reduced jacket area which can save costs

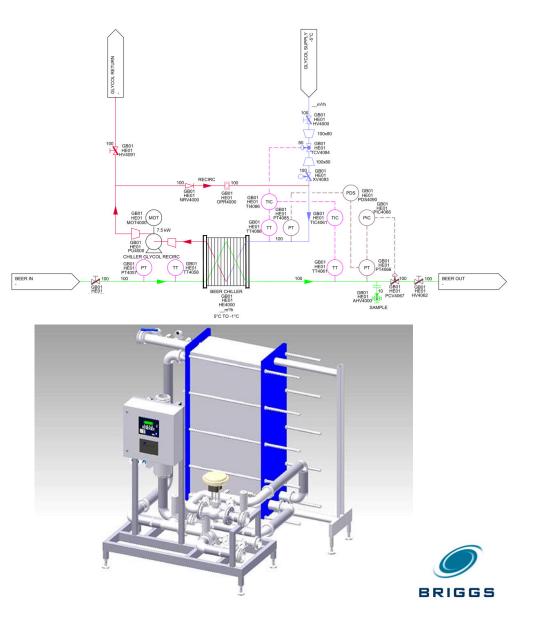
Technology Review – Beer Filters

- Filtration options
 - DE vs membrane
 - Types of membrane system
 - Pre-Filter Centrifuge?
 - Batch
 - Continuous
- Stabilisation options
 - Single use / total loss Silica gel or PVPP
 - Conventional Regen PVPP
 - Modular / continuous PVPP

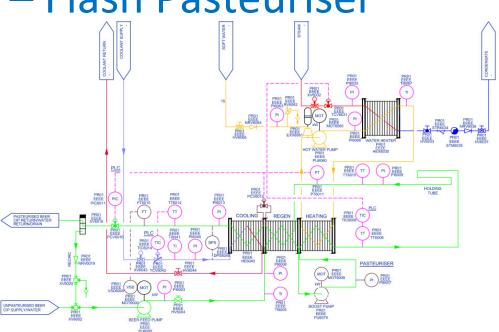
Membrane Filtration

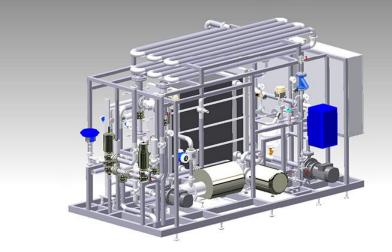
- 470 hl/h Membrane Filter Stream
- One of 2 streams installed in 2007
- Pall Membrane technology
- Continuous system

- 400 hl/h Membrane Filter Stream
- One of 2 streams installed in 2015
- Pentair Membrane technology
- Batch system


Membrane Filtration vs DE

Filter Media	Lower cost than DE	10 - 30%
Electrical Energy Cost	Comparable to DE	
	• 0.3 –0.6 kWh	
Thermal Energy Cost	Lower than DE	60 – 75%
Water Consumption	Lower than DE	25-40%
	• Water consumption < 0.15 hl/hl beer	
Manpower	Lower than DE	80%
Disposal Cost	Lower than DE	>95%
Service Cost	Lower than DE	30 –50%


Heat Exchange – Beer Chiller


- Plate Heat Exchanger
 - Single stage
- Secondary refrigerant
 - Beer pressure > coolant
 - Coolant Recirculation
 - Minimises freezing risk
 - Stabilises temperature control

Heat Exchange – Flash Pasteuriser

- Plate Heat Exchanger
 - Multi stage unit
 - Regeneration > 93%
 - Hot water heating
- Holding tubes
 - Thermal stabilisation
 - PUs related to temperature and time
- Boost pump
 - pasteurised beer at higher pressure than unpasteurised

Technology Review – DAW Systems

- DAW generation technology
 - N2 vs CO2
 - Hot or cold
 - Gas stripping vs cross flow
- Choosing a DAW storage temperature
 - Blending largest user
 - Hold at max temperature possible to achieve blended beer temperature to reduce energy loss
- Do you need to DAW flush?
 - If DAW not required used chilled water (e.g. yeast flushes)

DAW Generation

- Cross flow DAW plant
- 950 hl/h capacity
- Centec Technology
- Installed 2015, UK

- CO2 Stripping DAW plant
- 300 hl/h capacity
- Alfa Laval, Aldox Technology
- Installed
 2012
 Uganda

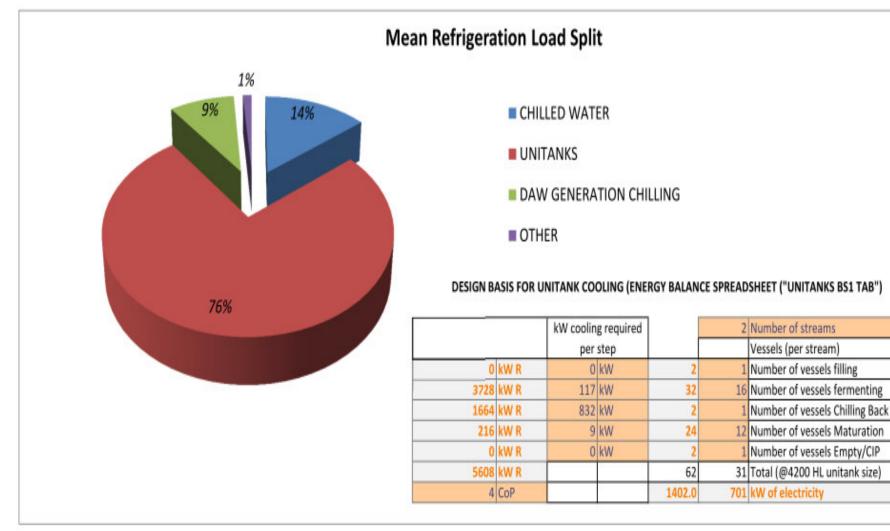
TO DRAIN

DAW FROM AMMONIA UNIT-IDF UNION OD63,5 DAW TO AMMONIA UNIT-IDF UNION OD63,5

WATER/CIP INLET

TER/CIP INLET UNION IDF OD63,5 DAW/CIP OUTLET IDF UNION OD63,5

VD10 Al8


WD10 PU8610

LOUMN WD10 K21

WD10 HV861

DIA 600MM

Brewery Refrigeration Load

Refrigerant Selection

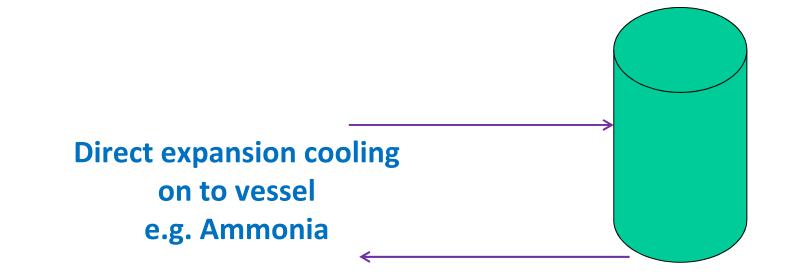
- Refrigerant options:
 - Primary
 - R717 Ammonia
 - R134a 1,1,1,2 Tetrafluoroethane
 - Secondary
 - Water
 - IMS
 - Glycol
 - Brine
- Refrigeration choice depends on:
 - Process requirements
 - Temperature required
 - Safety
 - Existing site capability

Refrigerant Selection

- Water
 - Pro's
 - Safe
 - Energy can be transferred into the product (e.g. wort cooler used to heat process water for sparging)
 - Environmentally friendly
 - Can be buffered
 - Con's
 - Possible to freeze
 - Unable to be used at low temperatures
- Glycol
 - Pro's
 - Safe
 - Can be buffered
 - Can be used at lower temps to water
 - Con's
 - Increased pumping energy
 - If released into the environment can lead to high COD/BOD
 - Requires primary refrigerant (e.g. ammonia) to cool

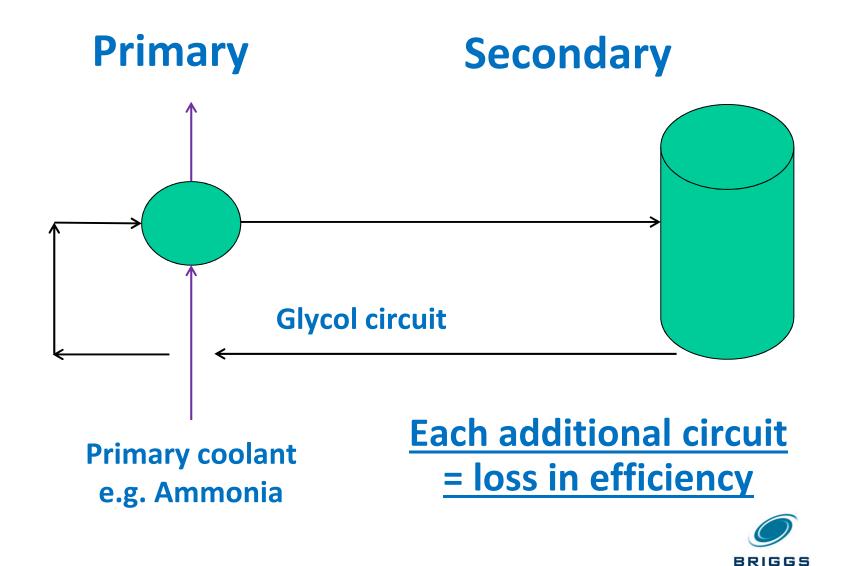
Refrigerant selection

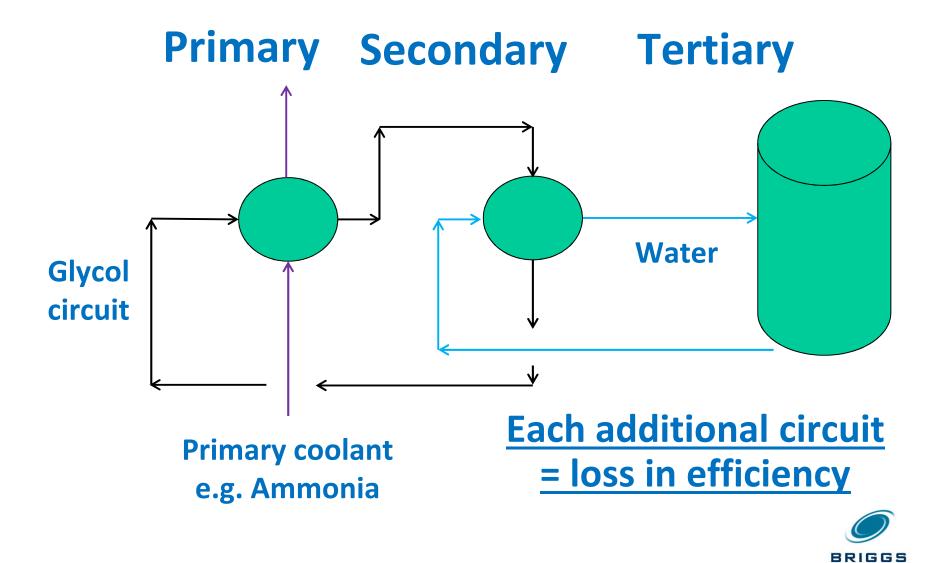
- Brine
 - Pro's
 - Safe
 - Environmentally friendly
 - Easy to detect
 - Can be buffered
 - Con's
 - Corrosive (increased pipework spec required)
 - Requires primary refrigerant (e.g. ammonia) to cool
- Ammonia
 - Pro's
 - Efficient
 - Minimal pumping
 - Change of state
 - Single supply can offer multiple temperatures
 - Con's
 - Toxic but detectable at low levels
 - Difficult to buffer
 - High Pressure Storage, highly regulated
 - Widely used outside UK



Typical Operating Temperatures

Operation	Ale	Lager	Stout
Ferment	18-22°C	10-12°C	20-24°C
Yeast Crop	10-12°C	4-6°C	N/A
Green Beer	10-12°C	1-3°C	3-4°C
Condition	N/A	-1.5°C +/- 1°C	0°C


Overall Refrigeration system design Primary


Each additional circuit = loss in efficiency

Overall Refrigeration system design

Overall Refrigeration system design

COP & Relative Refrigerant temperature

• COP = Q/P

Where:

- Q = Refrigeration energy (kWr)
- P = Power Input (kW)

The Higher The Better

Can be estimated typically:

$$C_f = \frac{T_e}{T_e - T_c}$$

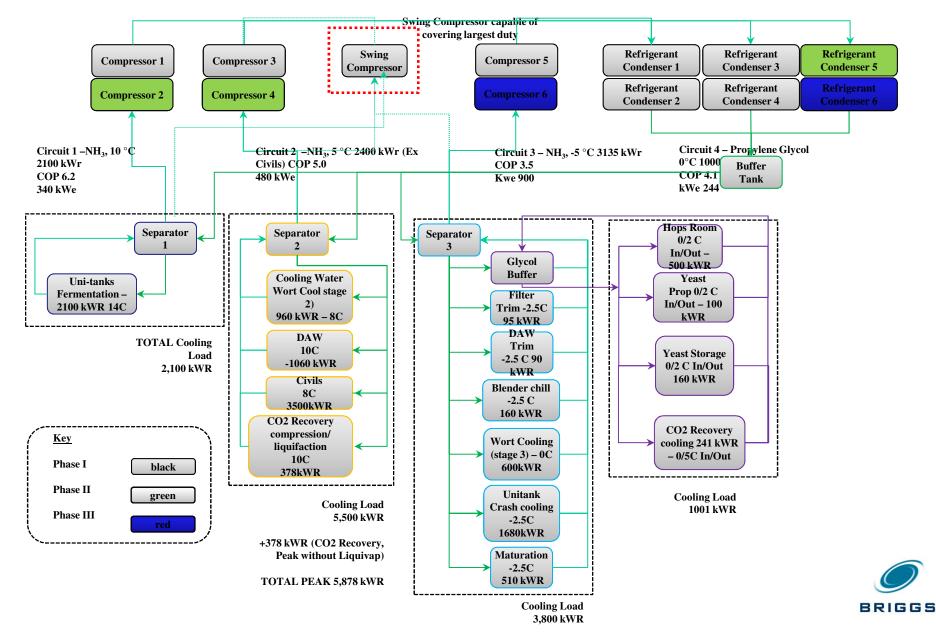
Where:

 $C_{f} = Carnot Factor$ $T_{e} = \text{Evap Temp (K)}$ $T_{c} = Cond Temp (K)$ $COP = (0.5-0.7) C_{f}$

Primary Fridge Circuit	Evap Temp °C	COP (Est)
1	10	6.2
2	5	5.0
3	0	4.1
4	-5	3.5

Direct Expansion Refrigeration

- Indirect
 - Glycol -5°C in
 - $-NH_3 10^{\circ}C$
- Direct
 - $-NH_3 3^{\circ}C$ in & out
- 20% reduction in refrigeration electrical power


Heat Exchange - Close Approach

- $Q = U \times A \times \Delta T$
- Close approach = minimise ΔT
 - Higher Coolant Temp
 - Less refrigeration energy
 - Lower operational cost
- Higher UA needed
 - Greater surface area A
 - Greater capital cost

Refrigeration

Summary

- Largest Energy Saving Opportunities in Tank
 Farm Operations
- Good Integration allows matching of Utilities with Process to maximise efficiency
- The search goes on for an efficient Non Toxic
 Primary Refrigerant

