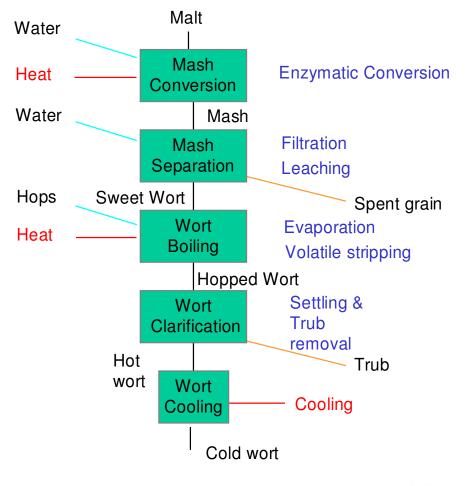


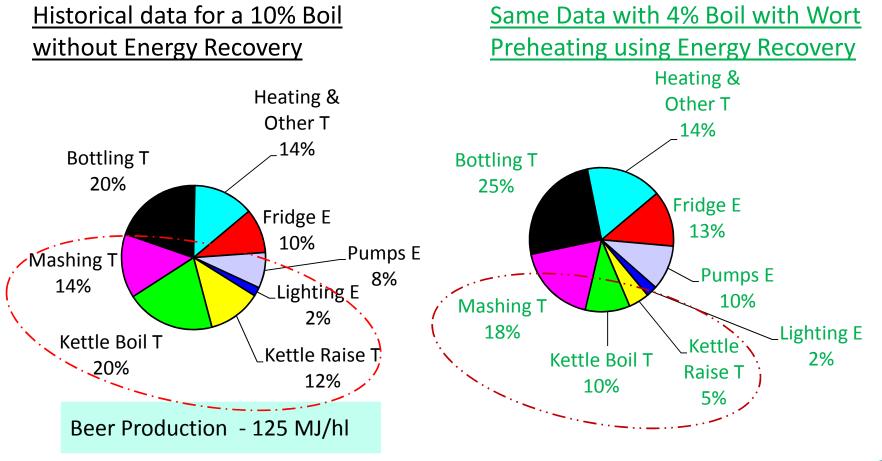
Brewhouse & Heat Energy Integration

IBD Midlands Section Engineering Symposium on Engineering Design & Sustainability DCCC Derby – Jan 2017 John Hancock – Briggs of Burton

Brewhouse & Heat Energy Integration


- Brewhouse Process
- Mash Conversion & Heating
- Mash Separation
- Wort Pre-heating, Boiling and Energy Recovery
- Wort Cooling optimisation
- Heat Energy provision and balancing
- Pumps
 - Selection & Efficiency
 - VSD operation

Brewhouse Process


- Two major thermal energy input points
 - Mashing
 - Wort Heating & Boiling
- Mash separation
 - Extract efficiency
 - Pinch point
- Two major thermal energy recovery opportunities
 - Wort Boiling
 - Wort Cooling

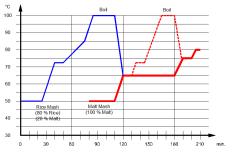
Brewery Energy Usage

Brewhouse - Major Energy Users Mashing & Wort Boiling

Mash Conversion & Heating - Objectives

- Mixing & wetting of grist with water
- Breakdown of proteins
- Starch Gelatinisation & Liquefaction
- Conversion of Starch to Sugars
- Optimise enzyme activity
- Retain malt husk
 - as a filter aid in Mash
 Separation

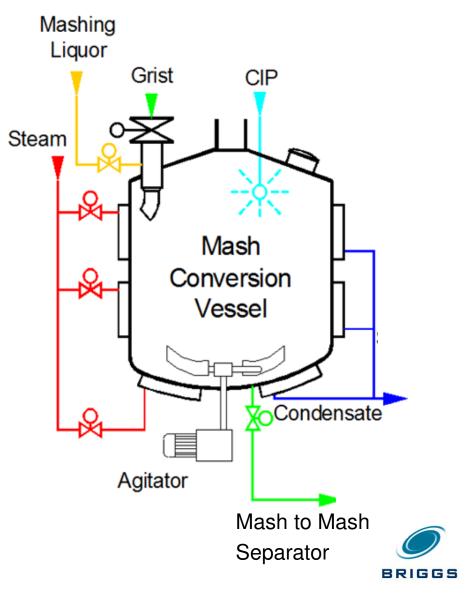

Heating and Temperature control essential


Mashing – Alternative Processes

- All Malt :
 - Infusion Mash Tun (minimal energy input) or
 - Programmed Infusion Mash Vessel
 - To feed separate Lauter Tun or Mash Filter
 - Mash in at around 65°C, lower energy input

Mashing

Liquor Steam Grist Conversion Vessel Agitator Mash Conversion Vessel Agitator Mash Pump



- Decoction Mash Kettle + Mash Vessel
 - To feed separate Lauter Tun or Mash Filter
 - More energy intensive
- Malt + Adjuncts :
 - Cereal cooker & Mash Vessel
 - Low shear mixing & transfer essential
 - Energy intensive

Mash Conversion & Heating - Features

- Pre-masher
 - Vortex type shown
 - Steeles Masher
- Gentle low shear mixing
- Controlled heating
- Zoned jackets
- Low shear transfer pump system
- Effective CIP

Grist Hydration - Pre-masher

Vortex Masher

- Grist mixed into swirling, turbulent water flow
- Low shear
- Simple No moving parts to maintain

Steeles Masher

- Positive flow path
- Gentle mechanical mixing
- VSD Controlled
- Effective with
 - fine grist
 - Low (thicker) mash ratio

Mash Agitation - Minimising Mash Shear

AGITATOR

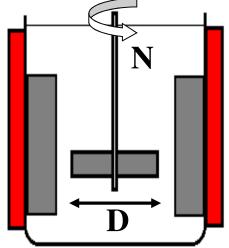
- Large (85% of Vessel Diameter)
- Rotation Slow Max Tip Speed 3.5 m/s
- Mounted Off Centre (5 % Diameter)
- Variable Speed
 - Higher speed for Mashing & Heating
 - Slow Speed for Mash Stands > 55 °C
- Agitator close to base to ensure swept surfaces and avoid mash burn on

Effective mixing needed to ensure homogenous mash with uniform temperature distribution.

- Low Shear Mixing is a Combined Effect of Vessel
- Shape and Agitator

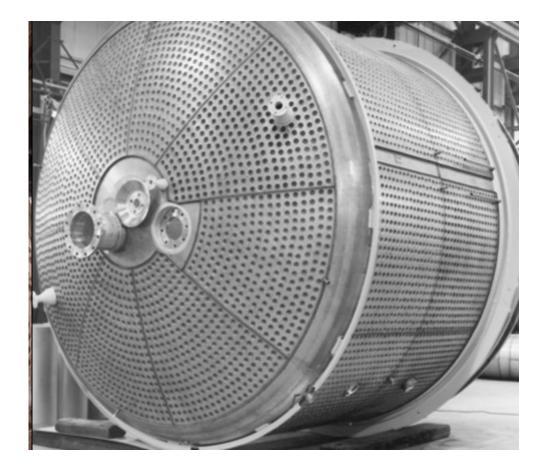
VESSEL SHAPE - Low Aspect Ratio

- (Height : Diameter) 0.6 :1
- Tilted Dish
- No Internal Baffles

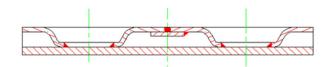


Mash Heating – Heat Transfer

 For Agitated Jacketed vessels, Forced Convection Heat Transfer is a function of Reynolds (Re) and Prandtl (Pr) Numbers (dimensionless) -


$$Re = \frac{\rho ND^2}{\mu}$$
$$Pr = \frac{c_p \mu}{k}$$
$$h = \left(\frac{k}{D}\right) 0.023 Re^{0.8} Pr^{0.4}$$

- Heat Transfer Coefficient (HTC) primarily dependent on turbulence / movement, in this case controlled by vessel / agitator system properties
 - <u>agitator diameter (D)</u>, agitator speed (N), and agitator type
- HTC also dependent on physical properties
 - density (ρ), viscosity (μ), specific heat capacity (c_p) and conductivity (k)
 - For mash, viscosity is critical, especially for fine mash filter grist at low temperatures



Mash Heating - Dimple Jackets

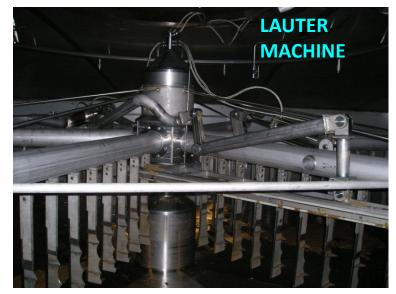
- Welds located in a regular pattern
- Maintains strength using thin shell material
- Dimples impart turbulence
- Flow guiding system can be installed for liquid heating to increase contact time

Mash Separation - Objectives

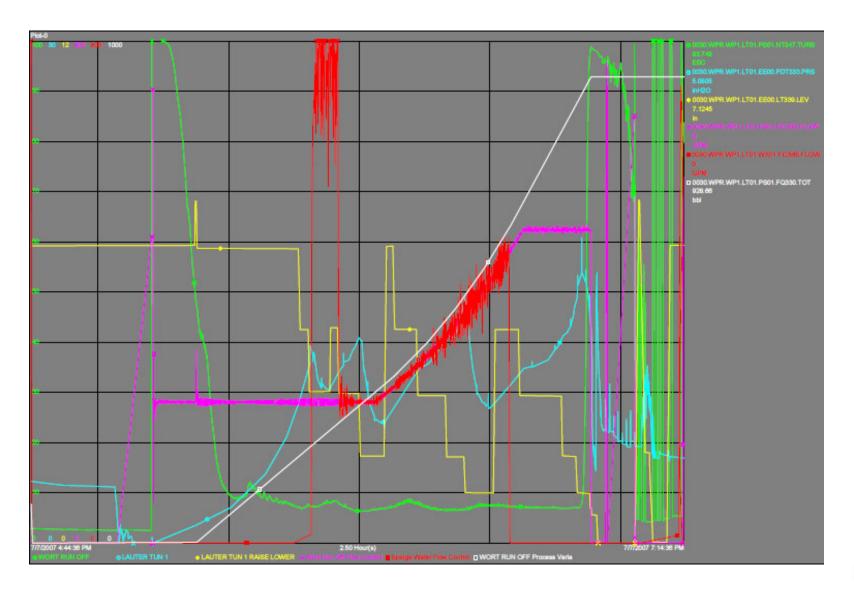
- Mash Filtration
 - Separation of Clear Wort from grain bed
 - Malt husks form a filter aid
 - More effective with coarse grist
- Sparging
 - Leaching of remaining extract from grain bed using hot Sparge water
 - More effective with fine grist
- Spent Grains Disposal by-product
- Maximise Filtration & Sparging time
 - Minimise Underlet, Mash-in, Grain out etc times

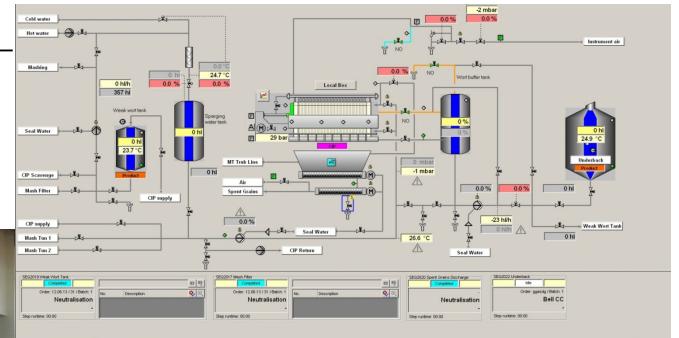
Lauter - Design

- Lauter tun Size
- Mash Distribution
- Wort Collection
- Sparge Distribution
- Lautering
- Grains Discharge
- Underplate Flush

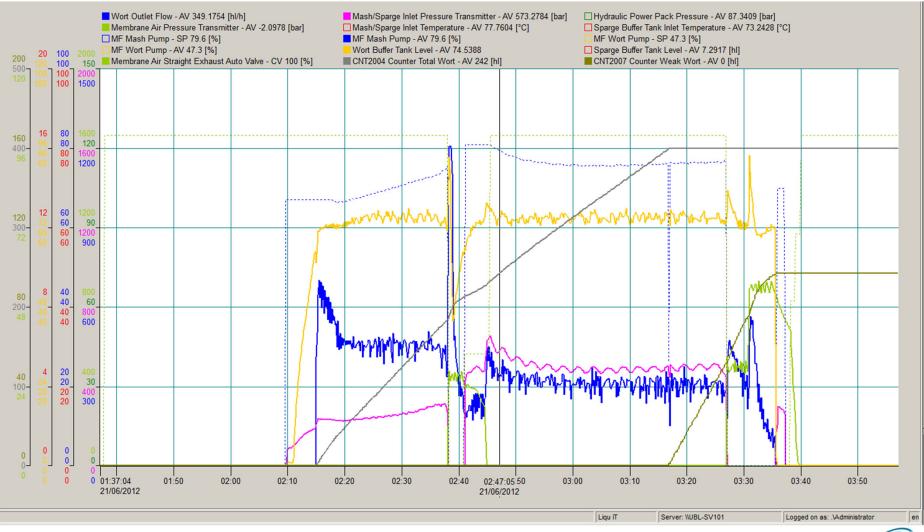

- Loading & Cycle time
- Low shear & Min O₂
- Even run-off
- Sparge Nozzles
- Knife design & speed
- Plough & Valves
- Jetting Nozzles

Lauter Tun




Brewery Lauter Tun Operation 12 Brews/Day at 160kg/m² - 12.8 m dia

Mash Filter – Meura 2001 Hybrid


- Installation in Uganda -
 - 102 hybrid chambers
 - 7 to 10.2 Te grist
 - 320 to 400 hl cold wort
 - 10 BPD initially
 - 12 BPD future

- Mash Filter Capability
 - Up to 14 BPD
 - High extract yield
 - Up to 100% adjunct
 - Minimal effluent
 - Drier spent grains
 - Limited flexibility

Mash Filter – Operation (Meura 2001 Hybrid)

Mash Separation - Comparison

	<u>Mash Tun</u>	Lauter Tun	Mash Filter
Throughput	Low ≤ 4 b.p.d.	Mod. – High 8 to 12 BPD	High 12 to 14 BPD
Extract Efficiency	OK 95 to 97%	Good 98 to 99%	High >100 %
Flexibility	Good 30 to 100%	Good 40 to 100%	Poor 80 to 110%
CIP	OK	OK	Inefficient 4 to 8 hrs
Complexity	Simple	Complex	Complex
Cost	Low	Moderate	High

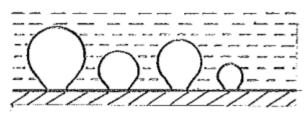
Wort Pre-Heating – Temperature raise

- Energy Input
- $q = M \times C_P \times (T_2 T_1)$
 - M = Mass (kg)
 - C_P = specific heat (kJ/kg C)
 - T₁ & T₂ = Initial & Final Temperature (°C)
- Example Heat 1000 hl wort (1.06 SG) from 75 to 100 °C
 - Density = 1.06 x 97.4 kg/hl = 103.2 kg/hl
 - Mass M = 1000 hl x 103.2 kg/L = 103,200 kg
 - Specific Heat $C_P kJ/kg K$
 - Energy to heat 1 kg by 1 °C (or °K)
 - Water = 4.2 kJ/kg K
 - Wort = 4.0 kJ/kg K
 - = 103,200 x 4.0 x (100 75) = 10,320,000 kJ = 10,320 MJ

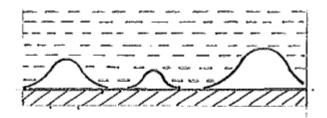
Wort Boiling – Evaporation phase change

- Liquid to Vapour Energy Intensive
- Specific heat of Evaporation h_{fg}
 - Energy to evaporate 1 kg
 - Water h_{fg} = 2257 kJ/kg at atm pressure
- Boil Energy input
 - e.g. 5% volume off 1000 hl wort
 - $= M_E x h_{fg}$ $M_E = Mass Water Evaporated$
 - M_E = 1000 hl x (5/100) x 100 kg/L = 5,000 kg
 - = 5,000 kg x 2257 kJ/kg = 11,285,000 kJ
 - =11,285 MJ

Wort Boiling - Objectives

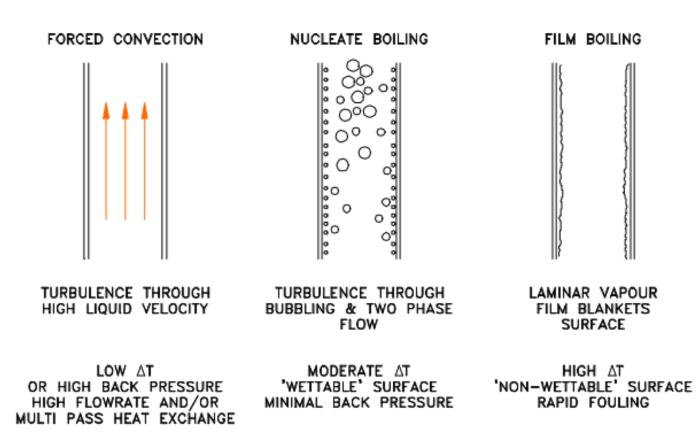

Objective	Process Factors	
Volatile Removal	Evaporation & Turbulence	
Isomerisation	Temperature & Time	
Flocculation	Vigorous Boil (Wort/vapour interface - bubbles), Low Shear	
Sterilisation & Enzyme Inactivation	Temperature & Time	
Gravity / Volume	Evaporation	

Evaporation itself is not the key process in Wort Boiling, Other factors are more critical.


Wort Boiling – Heating surface

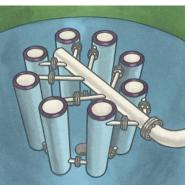
- Boiling Mode affected by
 - Temperature Difference
 - Surface 'Wettability'
- Copper
 - 'Wettable'
 - Vapour bubbles easily released
 - Film boiling only at very high ΔT
- Stainless Steel
 - Non-Wettable
 - Vapour clings to surface
 - Film boiling can occur at low ΔT

COPPER - 'WETTABLE'

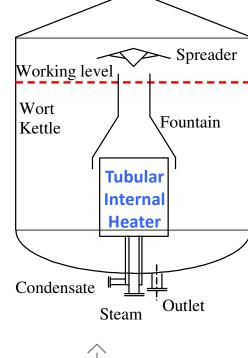

Vapour Bubbles released

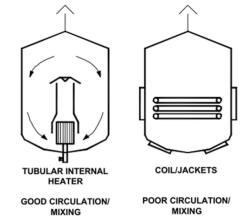
<u>STAINLESS STEEL</u> -'NON-WETTABLE' Vapour bubbles cling to surface.

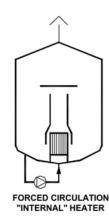
Wort Boiling – Heat Transfer Modes


Boiling Heat Transfer - Fouling, Area & ΔT

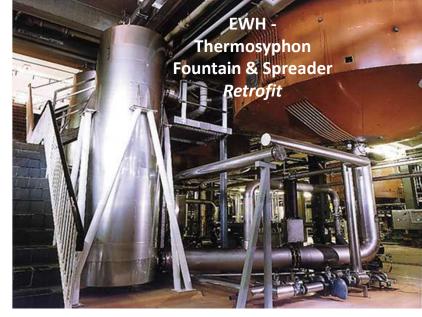
- $Q = U \times A \times \Delta T$
 - U Heat Transfer Coefficient
 - Higher for Nucleate Boiling
 - Low for Film Boiling
 - Fouling reduces U progressively
 - A Surface Area
 - Low Surface Area needs higher ΔT
 - $-\Delta T$ Temperature Difference Driving Force
 - Low ΔT needs Large Surface Area
 - Low ΔT reduces fouling

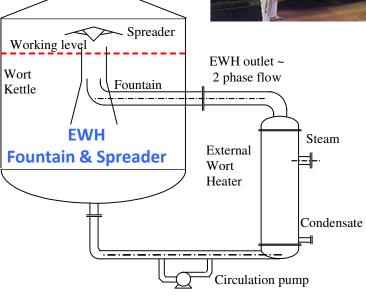



Wort Boiling - Internal Wort Heater


- Traditional
 - e.g. North America
- Percolators
 - Very low Surface area
- Tubular Internal Heater
 - Low Surface Area
 - Typically 0.08 m²/hl
- Needs frequent CIP
- Fountain & Spreader
- May be pump assisted
 - Similar to External Heater

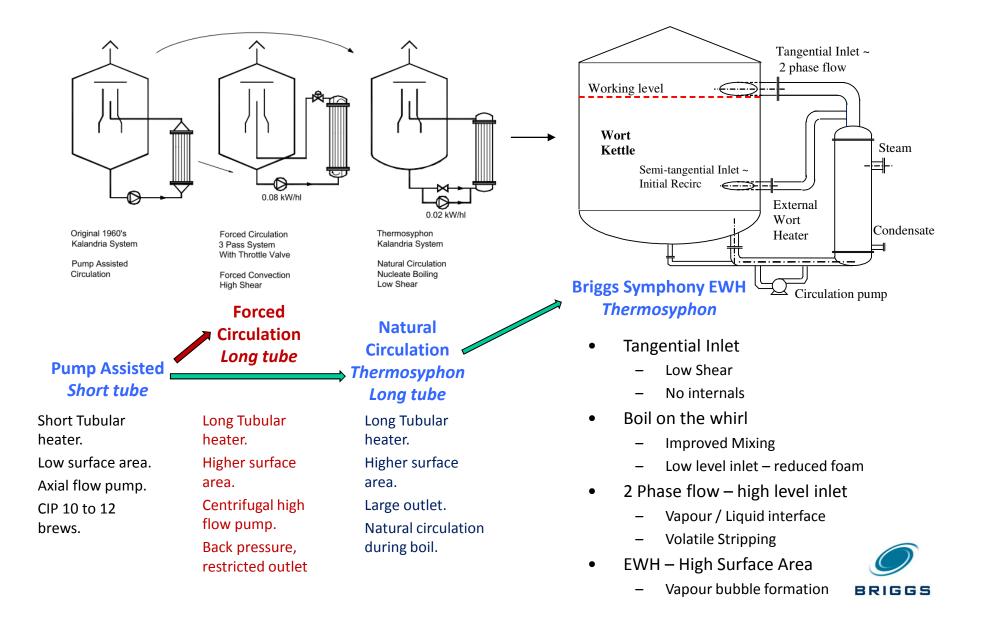
Percolator


Wort Boiling – External Wort Heater

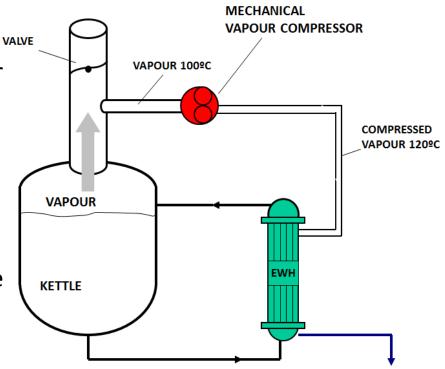


- Flexible
 - Brewlength
 - CIP volume
- Fountain & Spreader
- Thermosyphon
 - low shear
 - Typically 0.2 m²/hl

OR

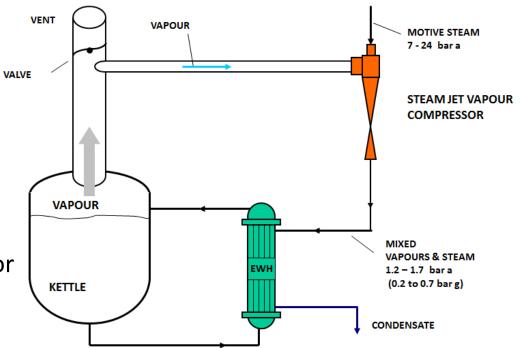

- Forced Circulation
 - Pumped
 - high shear

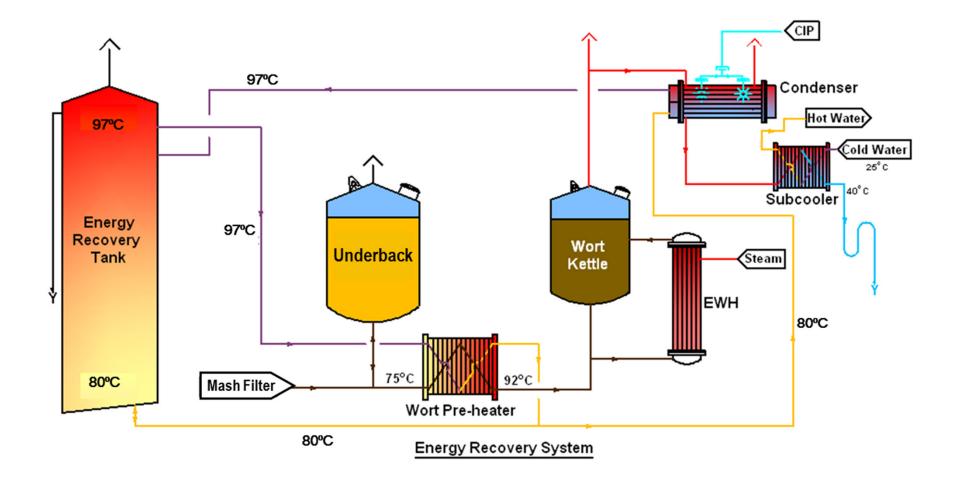
External Wort Heating Development


Wort Boiling – Energy Recovery

- Wort Boiling Major Energy User
- Minimise Evaporation
 - Maintain Wort Quality
 - 1% reduction in evaporation
 - saves approximately 2 to 4% of Brewhouse energy consumption (1 to 2% of total brewery energy consumption)
 - Reduces peak steam / HTHW loads
 - Reduces emissions
- Energy Recycle or Recovery
 - MVR Recycle over 90% of energy during boil
 - TVR Recycle up to 50% of energy during boil
 - Energy Store Recover energy for use elsewhere
 - Wort Pre-heating

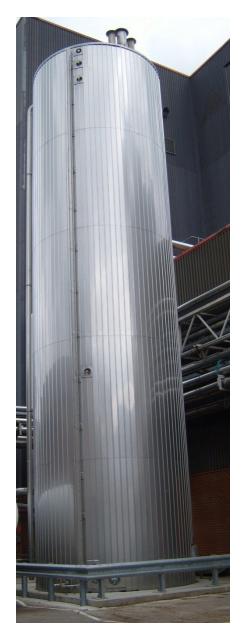
MVR – Mechanical Vapour Compression


- Direct Recycling of Boil Energy
 - Minimal Thermal Boil Energy Requirement
- Replaced with smaller Electrical Power Input
 - Electricity Requirement 0.1 0.7 kWh/hl
- High Capital Investment
 - Long Payback Period (>3 years)
- Large rotating machine Maintenance
- Difficult to Maintain Air Free Wort Boiling
- Contaminated condensed vapour limits reuse


TVR – Thermal Vapour Compression

- Lower Capital cost than MVR
- Recycles 50% or less of boil thermal energy
 - Reduced Energy saving
 - Can be combined with Energy Store to increase recovery
 - Dual system increased complexity & cost
- Requires high pressure steam for recompression
 - typically 10 bar g or higher
- Contaminated condensed vapour limits reuse

Energy Store – Wort Pre-heating


Energy Recovery - Wort Pre-Heating

- Heating Energy = $M \times C_P \times (T_2 T_1)$
- <u>No Energy Recovery</u>
 - Heat 1000 hl wort 75 to 100 $^\circ C$
 - = 100,000 x 4.0 x (100 75) = 10,000,000 kJ
 - = 10,000 MJ
- <u>With Wort Pre-heating</u> to 92 °C
 - Heat 1000 hl wort 92 to 100 °C
 - = 100,000 x 4.0 x (100 92) = 3,200,000 kJ
 - = 3,200 MJ
- Energy Saving = 10,000 MJ 3,200 MJ = 6,800 MJ
 - = 68% reduction

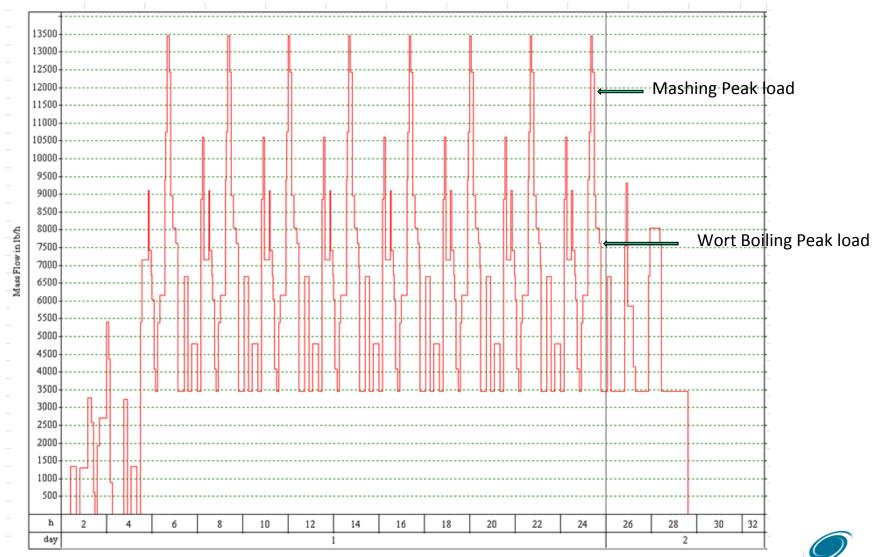
Steam Saving = 6,800,000 kJ / 2,133 kJ/kg = 3,188 kg/brew

Energy Store, Condenser & Pre-heater

Energy Store Tank

Condenser

Pre-heater



Wort Cooling – Energy Optimisation

- Heating of Hot Brewing Water at Wort Cooling
 - Biggest single energy saver in the Brewhouse
 - Established and proven
- Seasonal water temperature variation & recipe variation
 - Variation / excess hot water volume, and / or temperature
- Single Stage Cooling with Blending of chilled and ambient water
 - System balanced / optimised
 - Closer approach temp Refrigeration energy minimised
- Multi Stage Wort Cooling
 - 1 Hot section with Energy Store Heat energy source -> Wort Pre-heating
 - 2 Wort / Ambient Brewing water -> Hot Brewing water
 - 3 Wort / Chilled water or glycol Cold Energy buffer
 - Buffering smooths peak loads
 - Alternatively direct primary refrigerant on final stage

Heat Energy Provision & Balancing

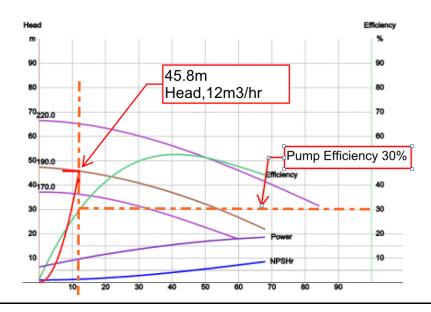
Short TAT Brewhouse

- More brews/day x Smaller Brewlength
- Lower peak / smoother utility loads
- Smaller physical size shorter runs
- Reduced energy loss

Brews/Day	Brewlength hl	Volume / Day hl/day
14	200	2800
10	280	2800
8	350	2800

Continuous Brewhouse

- Comparison -
 - Batch
 - 200 hl x 14 BPD
 - 350 hl x 8 BPD
 - Continuous 100 hl/h
- Small plant size 60% vs 14 BPD
- Reduced losses & energy consumption
- Smooth utility load minimal peaks



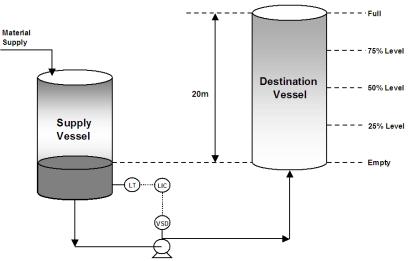
Pump Selection

- Pumps consume 10% of world electrical energy
- Power is typically 85% of a pumps total cost of ownership
- Pump Efficiency = Power Imparted on Fluid
 Power Supplied to Drive
- Pump Efficiency
 - High efficiency at duty point = Low power use
 - Low efficiency at duty point = High power use (& higher shear)
- Case Study: Pump Duty = $12m^3/hr$ at 39m head
 - Pump A: Low capital cost
 - Pump B: Higher efficiency

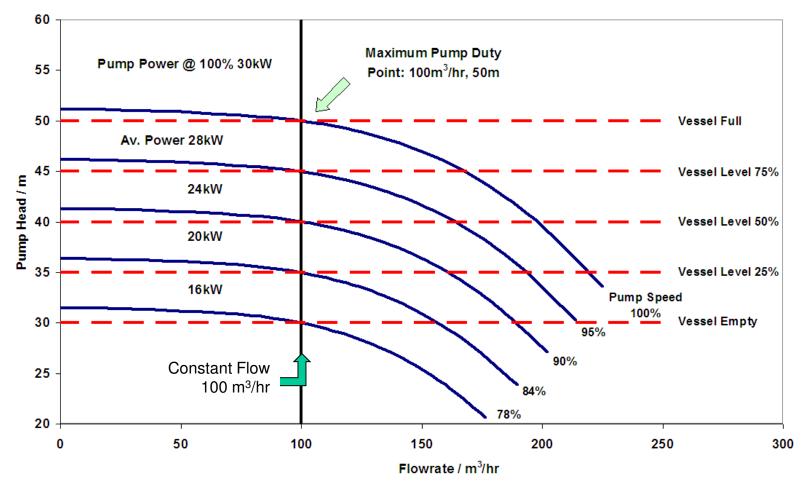
Pump - Capital Cost vs Efficiency

Low Capital Cost & Efficiency

This pump could achieve 50% + efficiency, but not at duty point. Low efficiency at duty, high power usage & running costs.


Higher Capital Cost & Efficiency

This pump has duty point closer to maximum efficiency. Higher efficiency & lower operating costs. In reality efficiency could be higher, typically 60 to 70%.


VSD Pump Operation

- In reality pumps often have a range of duties.
- Example filling a tank at constant flow and variable level
- Pump Affinity Laws
 - Flow proportional to (speed)
 - Head (pressure)proportional to (speed)²
 - Power is proportional to (speed)³
- Pump Speed 50%
 Power Consumption 12.5%
- Using pump affinity laws we can estimate the pump speed & power used to maintain flow as the level in the tank increases

VSD Pump Curve

VSD Pumps – Power Use

Tank Level	Pump Speed	Power Consumption
Empty	78%	14 kW
25%	84%	18 kW
50%	90%	22 kW
75%	95%	26 kW
Full	100%	30 kW

- Daily Energy Consumption
 - Fixed Speed 720 kWh
 - VSD <u>526 kWh</u>
- Energy Consumption Reduction

<u>26%</u>

Good process flow & effective space use means minimal pump & conveyor power use.

Brewery Process - Flow