

Energy Minimisation, Recovery and Re-use within the Brewhouse

JOINT IBD MIDLANDS SECTION /BFBI ANNUAL ENGINEERING SYMPOSIUM: RENEWABLE ENERGY 15 February 2018 John Hancock – Briggs of Burton

Briggs of Burton

Rochester, New York

Burton on Trent, UK

Shanghai, China

Part of CIMC Enric Group

- Briggs
 - Brewing
 - Distilled Spirits
 - Food
 - Pharmaceutical
 - Biofuel

- Ziemann Holvrieka
 - Brewing
 - Dairy and Juice
 - Chemicals

Briggs of Burton

Sectors

- Brewing
- Distilling
- Material Handling
- Food
- Health and Beauty
- Pharmaceutical
- Biofuel

Capabilities

- Project Management
- Process Engineering
- Automation and Control
- Electrical Engineering
- Manufacturing
- Concept / FEED Studies
- Value Engineering
- Detailed Design
- Project Implementation
- CDM + Health & Safety
- FSM HAZOP
- EPC / EPCM / Hybrid

Energy Minimisation, Recovery and Re-use within the Brewhouse

- Energy Minimisation
 - Process change use less energy
 - Reduce losses waste less energy
- Energy Recovery and Re-use
 - Recycle energy directly
 - Recover energy for use elsewhere
 - Export energy
- Renewable / Alternative Energy

	Current	Potentia
Very energy efficient - lower running costs		
(03-100) A		
(81-92) B		-
(66-80) C	12-11	78
(51-65)	55	
(36-50)	1.000	
Q1-35)		
6.26 G		

Energy Minimisation, Recovery and Re-use within the Brewhouse

- Brewhouse Energy Use
- Mashing
- Wort Boiling and Energy Recovery
- Wort Cooling
- Energy Minimisation
 - Rapid TAT & Continuous
 - Pipe Sizing
 - Pumps
 - Selection & Efficiency
 - VSD operation
 - Insulation
- Renewable Energy

Brewhouse Process

- Process starts & ends cold
- Two major thermal energy input points
 - Mashing
 - Wort Heating & Boiling
- Mash separation
 - Extract efficiency
 - Pinch point
- Two major thermal energy recovery opportunities
 - Wort Boiling
 - Wort Cooling

BRIGGS

Brewery Energy Usage UK – 1976 to 2000

Specific Energy Consumption by Brewer 2007 to 2008

Brewery Energy Use

Brewhouse - Major Energy Users Mashing & Wort Boiling

Brewery Energy Use - What is Possible

- Several large breweries, worldwide are operating at total Energy use between 75 and 100 MJ/hl
- Much less is achievable
- Recent New Brewery Design Concept
 - Thermal Energy used
 - Brewhouse 11 MJ/hl packaged beer
 - Brewery 25 MJ/hl packaged beer
 - Including Brewhouse
 - Excluding Packaging
 - Packaging 11 MJ/hl packaged beer

Mashing – Thermal Energy

- Mash-in using hot water generated at Wort Cooling
- Higher Mash-in temperature reduces thermal energy input at Mashing
- Traditional Infusion Mash tun
 - No mash heating load
 - Increased wort heating load
- Thicker Mash ratio reduces energy input

Mash Heating – Temperature raise

- Energy Input $q = M \times C_P \times (T_2 T_1)$
 - M = Mass (kg)
 - C_P = specific heat (kJ/kg C) Energy to heat 1 kg by 1 °C (or °K)
 - $T_1 \& T_2$ = Initial & Final Temperature (°C)
- Based on 1000 hl wort (1.06 SG) 100% Malt
 - 22 Te malt mashed at 3 L/kg, 86,700 kg total
 - Mashed in at conversion temperature
- Heat 86,700 kg from 65 to 76 °C
 - Specific Heat C_P kJ/kg K
 - Water = 4.2 kJ/kg K, Mash = 3.7 kJ/kg K
 - = 86,700 x 3.7 x (76 65) = 3,528,700 kJ = 3,529 MJ
 - = 3.53 MJ/hl HG wort

around 3 MJ/hl SG beer (30% HG)

Mash Heating – Temperature raise

- Based on 1000 hl wort (1.06 SG) 100% Malt
 - 22 Te malt mashed at 3.5 L/kg (thinner mash), 97,500 kg total
 - Mashed in at low temperature
- Heat 97,500 kg from 35 to 76 °C
 - Actually heated in steps as shown
 - Specific Heat C_P kJ/kg K
 - Water = 4.2 kJ/kg K , Mash = 3.75 kJ/kg K
 - = 97,500 x 3.75 x (76 35) = 14,990,600 kJ = 14,990 MJ
 - = 15 MJ/hl HG wort

around 12 MJ/hl SG beer (30% HG)

Wort Heating – Temperature raise

- Energy Input $q = M \times C_P \times (T_2 T_1)$
 - M = Mass (kg)
 - C_P = specific heat (kJ/kg C) Energy to heat 1 kg by 1 °C (or °K)
 - $T_1 \& T_2 = Initial \& Final Temperature (°C)$
- Heat 1000 hl wort (1.06 SG) from 75 to 100 °C
 - Density = 1.06 x 97.4 kg/hl = 103.2 kg/hl
 - Mass M = 1000 hl x 103.2 kg/L = 103,200 kg
 - Specific Heat C_P kJ/kg K

- Water = 4.2 kJ/kg K, Wort = 4.0 kJ/kg K

 = 103,200 x 4.0 x (100 - 75) = 10,320,000 kJ = 10,320 MJ = 10.3 MJ/hl HG wort around 8 MJ/hl SG beer (30% HG)

Wort Boiling – Evaporation phase change

- Liquid to Vapour Energy Intensive
- Specific heat of Evaporation h_{fg}
 - Energy to evaporate 1 kg
 - Water h_{fg} = 2257 kJ/kg at atm pressure
- Boil Energy input
 - e.g. 5% volume off 1000 hl wort
 - = $M_E x h_{fg}$ M_E = Mass Water Evaporated
 - M_E = 1000 hl x (5/100) x 100 kg/L = 5,000 kg
 - = 5,000 kg x 2257 kJ/kg = 11,285,000 kJ

=11,285 MJ

= 11.3 MJ/hl HG wort around 9 MJ/hl SG beer (30% HG)

Wort Boiling – Energy Minimisation, Recovery or Recycle

- Wort Boiling Major Energy User
- Minimise Evaporation
 - Maintain Wort Quality
 - 1% reduction in evaporation
 - saves approximately 2 to 4% of Brewhouse energy consumption (1 to 2% of total brewery energy consumption)
 - Reduces peak steam / HTHW loads
 - Reduces emissions
- Energy Recycle or Recovery
 - Energy Store Recover energy for use elsewhere
 - Wort Pre-heating
 - MVR Recycle over 90% of energy during boil
 - TVR Recycle up to 50% of energy during boil

Wort Boiling – Energy Recovery – Alternative Solutions

There are several potential methods of recovering heat from the wort boiling process, or recycling energy within the wort boiling system (which will also eliminate odour emission).

- a) Conversion of energy into another form for export outside the brewhouse, either by a simple condenser system exporting hot water (or by absorption refrigeration).
- b) Conversion of energy into another form for use in the brewhouse, using hot water from a vapour condenser/energy store system for wort preheating prior to wort kettle.
- c) Recycling energy directly within the wort boiling process using either, mechanical vapour recompression (MVR) or thermal vapour recompression (TVR).

Vapour Condenser – Hot Water

Energy Recovery System - Hot Water Generation

Production of Hot Water for use elsewhere

Vapour Condenser – Hot Water

- The simplest, lowest capital cost system
- Heating cold water up to 85°C for use elsewhere.
- In most cases, the water balance already produces surplus of hot water, and / or little use for hot water created, so often not relevant.
- A spray condenser may be used as a very simple low cost means of odour removal, with a secondary heat exchanger being used for energy recovery.
- Direct water/ vapour heat exchanger more effective as a condenser.

Energy Store – Wort Pre-heating

Energy Recovery System - Wort Pre-heating

Energy Recovery - Wort Pre-Heating

- Heating Energy = M x $C_P x (T_2 T_1)$
- <u>No Energy Recovery</u>
 - Heat 1000 hl wort 75 to 100 $^\circ C$
 - = 100,000 x 4.0 x (100 75) = 10,000,000 kJ

= 10,000 MJ or 10 MJ/hl HG wort around 8 MJ/hl SG beer (30% HG)

- With Wort Pre-heating to 92 °C
 - Heat 1000 hl wort 92 to 100 °C

= 100,000 x 4.0 x (100 - 92) = 3,200,000 kJ = 3,200 MJ

• Energy Saving = 10,000 MJ - 3,200 MJ = 6,800 MJ

= 6.8 MJ/hl HG hot wort or 68% reduction

around 5.2 MJ/hl SG beer (30% HG) reduction

Energy Recovery – Case Studies

Energy Recovery – Case Studies

Year	Cold Wort Vol	Brew Streams	Mash Separation
	hl	No	
1998	1,000	2	LT
2000	770	1	MF
2004	850	2	LT
2009	1,040	1	MF
2012	380	1	MF
2016	205	2	LT

Zhejiang, China

Coopers - Adelaide, SA

Coopers - Adelaide, SA

Coopers - Adelaide, SA

Yatala - Queensland

Recovered energy used for –

- Wort Pre-heating (2 streams)
- Plus
 - Soft (CIP) Water heating

Yatala - Queensland

Molson Coors - Burton, UK

Energy Store Tank

Recovered energy used for –

- Wort Pre-heating
- Plus
 - De-Alk Water heating

Wort Pre-heater

UBL - Port Bell, Uganda

Condenser

Recovered energy used for – – Wort Pre-heating Operation at 1200 m ASL

Spoetzl - Shiner, Texas

Spoetzl - Shiner, Texas

Energy Recovery – Case Studies - Capacity

WK					EST
Evap					Working
(Max)	Condense	r Capacity	Preheater	Capacity	Vol
%/h	KW	MJ	KW	MJ	hl
10%	8,150	29,340	2,990	8,880	3,500
8%	4,430	18,580	2,900	6,020	2,200
6%	3,620	13,030	4,380	6,620	2,600
10%	6,930	23,050	4,930	8,580	2,000
6%	1,390	6,250	1,790	3,160	1,020
9%	1,400	5 <i>,</i> 900	1,430	1,930	704

MVR – Mechanical Vapour Compression

- Direct Recycling of Boil Energy
 - Minimal Thermal Boil Energy Requirement
- Replaced with smaller Electrical Power Input
 - Electricity Requirement 0.1 0.7 kWh/hl
- High Capital Investment
 - Long Payback Period (>3 years)
- Large rotating machine Maintenance
- Difficult to Maintain Air Free Wort Boiling
- Contaminated condensed vapour limits reuse

TVR – Thermal Vapour Compression

- Lower Capital cost than MVR
- Recycles 50% or less of boil thermal energy
 - Reduced Energy saving
 - Can be combined with Energy Store to increase recovery
 - Dual system increased complexity & cost
- Requires high pressure steam for recompression
 - typically 10 bar g or higher
- Contaminated condensed vapour limits reuse

Wort Boiling – Reduce Evaporation or Not?

- Is boiling really necessary at all?
 - Temperature & time
 - Gas bubbles?
- Simmer & Strip
 - ABInBev patented
 - Minimal Evaporation
 - Minimal gas usage

Objective	Process Factors
Volatile Removal Gas stripping?	Evaporation & Turbulence
Isomerisation	Temperature & Time Boil not needed
Flocculation Gas stripping?	Vigorous Boil (Wort/vapour interface - bubbles), Low Shear
Sterilisation & Enzyme Inactivation	Temperature & Time Boil not needed
Gravity / Volume Boil Not Required	Evaporation - Brew to right gravity

Simmer & Strip – ABInBev Patent

(54) Title: METHOD FOR TREATING A WORT IN A BOILING KETTLE

(10) International Publication Number WO 2015/067737 A1

(57) Abstract: The present invention concerns a process for treating a wort in a kettle, said method comprising the steps of: (a) providing: • a kettle (1) provided with an inlet (1 u) suitable for feeding a wort into the kettle and with an outlet (1 d) suitable for flowing the wort out of the kettle, • heating means (2) suitable for bringing the wort contained in the kettle close to or at boiling temperature, as well as for controlling said temperature, • a gas sparging system suitable for sparging an inert gas into said wort, (b) feeding wort from a lautering step into said boiling kettle through the inlet, said wort being at a temperature below its boiling temperature; (c) while sparging an inert gas through the wort, heating said wort to, and maintaining it at a treatment temperature, T_a, which is below the boiling temperature, T_b , of the wort for a duration, t_{treat}, comprised between 15 and 90 min, and no longer than required to evaporate at most 4 wt.% of water initially present in the wort; (d) transferring the treated wort to a trub separation step through the outlet.

Wort Cooling – Conventional Systems

- Single Stage
 - Wort / Water
 - Simple easy to control
 - Can't control Hot Water temperature
 - Chilled Water
 - Direct Ammonia chilling of water
 - Buffered refrig load
- 2 Stage
 - Wort / Water + Wort / Coolant
 - Control Wort & Hot Water temperature
 - High peak refrig load

2 STAGE Ambient Water & Glycol

Wort Cooling – Energy Optimisation

- Heating of Hot Brewing Water at Wort Cooling
 - Biggest single energy saver in the Brewhouse
 - Established and proven
- Seasonal water temperature variation & recipe variation
 - Variation / excess hot water volume, and / or temperature
- Single Stage Cooling with Blending of chilled and ambient water
 - System balanced / optimised
 - Closer approach temp Refrigeration energy minimised
- Multi Stage Wort Cooling
 - 1 Hot section with Energy Store Heat energy source -> Wort Pre-heating
 - 2 Wort / Ambient Brewing water -> Hot Brewing water
 - 3 Wort / Chilled water or glycol Cold Energy buffer
 - Buffering smooths peak loads
 - Alternatively direct primary refrigerant on final stage

Short TAT / Rapid Batch Brewhouse

- More brews/day x Smaller Brewlength
- Lower peak / smoother utility loads
- Smaller physical size shorter runs
- Reduced energy loss

Brews/Day	Brewlength hl	Volume / Day hl/day
14	200	2800
12	233	2800
10	280	2800
8	350	2800
6	466	2800

Continuous Brewhouse

- Comparison -
 - Batch
 - 200 hl x 14 BPD 350 hl x 8 BPD
 - Continuous 100 hl/h
- Small plant size
 - 50% vs 14 BPD 30% vs 8 BPD
- Reduced losses & energy consumption
- Smooth utility load minimal peaks
 - Less starts & stops

Pipe Sizing

• Under sizing of process pipework can be attractive due to lower installed capital cost , but has long term energy implications

Dia mm	50	75	100	125	150
Capital Cost £ (Material & Installation)	£ 2,796	£ 3,854	£ 5,485	£ 7,533	£ 9,252
Relative Capital Cost	51%	70%	100%	137%	169%
Relative Velocity	400%	178%	100%	64%	44%
Relative Pressure Drop & Power Use	1600%	316%	100%	41%	20%

- Pressure drop is proportional to pipe velocity²
 - ¹/₂ Diameter -> 2 x Velocity -> 4 x Pressure Drop
- Pump duty is a function of pipework pressure drop (+ Static head)
 - Power proportional to flow x pressure
 - 4 x Pressure Drop = 4 x Power use (+ Static head power element)
- Undersized pipework will mean long term high pump power use

Pump Selection

- Pumps consume 10% of world electrical energy
- Power is typically 85% of a pumps total cost of ownership
- Pump Efficiency = Power Imparted on Fluid
 Power Supplied to Drive
- Pump Efficiency
 - High efficiency at duty point = Low power use
 - Low efficiency at duty point = High power use (& higher shear)
- Case Study: Pump Duty = $12m^3/hr$ at 39m head
 - Pump A: Low capital cost
 - Pump B: Higher efficiency

Pump - Capital Cost vs Efficiency

Low Capital Cost & Efficiency

This pump could achieve 50% + efficiency, but not at duty point. Low efficiency at duty, high power usage & running costs.

Higher Capital Cost & Efficiency

This pump has duty point closer to maximum efficiency. Higher efficiency & lower operating costs. In reality efficiency could be higher, typically 60 to 70%.

VSD Pump Operation

- In reality pumps often have a range of duties.
- Example filling a tank at constant flow and variable level
- Pump Affinity Laws
 - Flow proportional to (speed)
 - Head (pressure)proportional to (speed)²
 - Power is proportional to (speed)³
- Pump Speed 50%
 Power Consumption 12.5%
- Using pump affinity laws we can estimate the pump speed & power used to maintain flow as the level in the tank increases

VSD Pump Curve

VSD Pumps – Power Use

Tank Level	Pump Speed	Power Consumption
Empty	78%	14 kW
25%	84%	18 kW
50%	90%	22 kW
75%	95%	26 kW
Full	100%	30 kW

- Daily Energy Consumption
 - Fixed Speed 720 kWh
 - VSD <u>526 kWh</u>
- Energy Consumption Reduction

<u>26%</u>

Insulation

- Thermal insulation is proven, simple and often overlooked
 - Low cost
 - Low maintenance
 - Long term energy savings

INSULATION DEPTH	RELATIVE HEAT LOSS
Un-insulated	2373%
25	192%
38	130%
50	100%
75	68%
100	51%

- Small un-insulated areas have huge energy losses
 - Un-insulated approx. 24 x loss/m² vs 50 mm insulation
- Increased insulation thickness &/or better insulation gives significant long term energy saving
- Distribution lines continually lose (or gain) heat
- Uninsulated Vessel tops?

Renewable / Alternative Energy

- Spent Grain Combustion
- Dry De-Husking (DDH) ABInBev
 - Patented system
 - Husk separated Boiler fuel source
 - Reduced Brewhouse water use
- AD Biogas
 - Waste water treatment
 - Thermal energy produced
- Solar PV Panels
 - On site electric power generation
- Process / Utility Integration

Good process flow & effective space use means minimal pump & conveyor power use.

Brewery Process - Flow

Thank you for your attention. Any questions?

John Hancock Briggs of Burton www.briggsplc.co.uk

Fire S 1