Introduction to Process Control & Automation

Industrial Food Manufacture – Process Control & Automation

- Agenda

- 1. Introductions
- 2. Introduction to batch process control
- 3. Control system hardware (overview only)
- 4. System software terminology and concepts

Why Automate?

Introduction

Automation is complex, expensive, and can be full of jargon and acronyms!

So why do we do it?

Three key points:

- Improvements in quality (improved repeatability and increased precision)
- Reduction in human intervention (redeploy personnel or allow more to be done for similar manual input).
- Because the underlying technology requires it (speed of response or complexity difficult for a human to provide).

Example – Storage Tank Farm Valve Matrix

Example – Storage Tank Farm Valve Matrix

System Hardware

PLC (Programmable Logic Controllers)
HMI (Human Machine Interface)

PLC Based Control System

- Food & Drink Automation
 - Mainly batch sequence processing
 - Using Programmable Logic Controllers (PLC)
- Modular Rack/chassis
 - Power Supply Unit (PSU)
- Central Processing Unit (CPU)
- Network Modules (Ethernet)
 - Terminals and other systems
 - Fieldbus (smart instruments)
- Digital Input/Output (I/O)
- Analogue I/O
 - 4-20mA loops
 - HART (Highway Addressable Remote Transducers) Instruments – additional digital information
- Remote I/O
- Field Item Interface
 - Valve actuators
 - Motor Starters
- Control Panels

BRIGGS BREWING

PLC Hardware

- PLC are industrialised
 - Rugged & reliable
 - Handle high temperatures, humidity, & electrical noise
 - mean-times-between-failures are two orders of magnitude higher than that of a PC

- Parts and software from one manufacturer cannot be used with parts of another
- Once you have made your initial choice you will be locked into your suppliers range for future upgrades and expansions
- The two big vendors are Siemens and Rockwell

Siemens – S7 PLC

Rockwell Allen Bradley – Controllogix PLC

Valves & Instrumentation

HMI (Human Machine Interface)

		Hardware Platform	Functionality							
	НМІ Туре		Batch Initiation	Batch Supervision	Alarm Handling	Plant Visualisation	Data Trending	Diagnostic data	Recipe handling	Batch Scheduling
4	MES (Management Execution System)	General Business PC	-	-	Yes	Yes	Yes	Yes	Yes	Yes
3	SCADA (Supervisory Control and Data Acquisition)	Dedicated PC	Yes	Yes	Yes	Yes	Yes	Yes	Limited	Limited
2	HMI Graphic Terminal	PLC Proprietary	Yes	Yes	Limited	Limited	Limited	No	No	No
1	Lamps & push buttons	Component	Yes	Limited	No	No	No	No	No	No

System Software

Ladder Logic

- System Size
- Control Loops

Software DevelopmentState of the Art Systems

Software – Ladder Logic

- PLC Software Ladder logic
- Ladder logic
 - Replicates relay logic
 - ▷ Logic conditions on left
 - Outputs on right
 - ▷ Rungs processed sequentially
 - Scanned many times per second

Input Card Output Card

System Size

Hardware Setup

 \triangleright Proportional to I/O points (# Racks \rightarrow # Chassis)

Each valve could have 3 I/O points

▷ Large systems can have 1000's of I/O points

Software

 \triangleright Proportional to I/O

Process complexity is a factor

Brewhouse Vessels with 126 I/O points

BRIGGS BREWING

Control Loops – PID Controllers

- **Feedback control loops** are often used and have three elements:
 - Process Variable (PV) measurement of the parameter to be controlled
 - Set Point (SP) required or target value of the process variable
 - Output (OP) output from the control loop
- Common feedback loop controller is a PID controller.
 - Proportional (P) the output value is changed in proportion to the size of the error
 - Integral (I) the output value is changed in proportion to the duration of the error
 - Derivative (D) the output value is changed in proportion to the rate of change of the error.
- The ratio of each of the three terms can be varied thereby tuning the loop to give good control.
- PID controllers used to be separate electronic units but now usually algorithms built into the PLC software.

Software Development

User	User Design Software Engineer Develope		Notes				
URS (User Require	ment Specification)		Defines automation requirements from users point of view	Getting the			
FDS (Functional Design Specificati			Detailed definition of how the automation system works	right			
		Software Development	Development structured by in-house and/or customer coding standards	Writing Code			
	Internal Testing / s	software simulation	In-house testing of software code and function – most bugs removed at this point				
Custo	mer Acceptance Testing) (CAT)	Functional demonstration of system requirements				
	Field Testing / (Commissioning	Parameter setting, fine tuning, and hopefully only minor changes to support process commissioning				

State Of The Art Systems

Questions?

T: +44 1283 566661 E: sales@briggsplc.co.uk W: www.briggsplc.com

Briggs of Burton PLC, Briggs House, Derby Street, Burton on Trent, Staffordshire, DE14 2LH, United Kingdom

